Learning of Soccer Player Agents Using a Policy Gradient Method: Pass Selection

نویسندگان

  • Harukazu Igarashi
  • Hitoshi Fukuoka
  • Seiji Ishihara
چکیده

This research develops a learning method for the pass selection problem of midfielders in RoboCup Soccer Simulation games. A policy gradient method is applied as a learning method to solve this problem because it can easily represent the various heuristics of pass selection in a policy function. We implement the learning function in the midfielders’ programs of a well-known team, UvA Trilearn Base 2003. Experimental results show that our method effectively achieves clever pass selection by midfielders in full games. Moreover, in this method’s framework, dribbling is learned as a pass technique, in essence to and from the passer itself. It is also shown that the improvement in pass selection by our learning helps to make a team much stronger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Learning complementary multiagent behaviors: a case study

As machine learning is applied to increasingly complex tasks, it is likely that the diverse challenges encountered can only be addressed by combining the strengths of different learning algorithms. We examine this aspect of learning through a case study grounded in the robot soccer context. The task we consider is Keepaway, a popular benchmark for multiagent reinforcement learning from the simu...

متن کامل

Paper Active Grid-based Pass Region Estimation from Mul- tiple Frames of Broadcast Soccer Videos

An Active grid-based method for estimating pass regions from broadcast soccer videos is presented in this paper. It is assumed that the pass region has a high probability of the pass succeeding. In soccer matches, players discover pass regions based on previous and current player positions. In conventional methods, pass regions are estimated by applying Active Net to only a single frame of a so...

متن کامل

Learning to Cooperate via Policy Search

Cooperative games are those in which both agents share the same payoff structure. Valuebased reinforcement-learning algorithms, such as variants of Q-learning, have been applied to learning cooperative games, but they only apply when the game state is completely observable to both agents. Policy search methods are a reasonable alternative to value-based methods for partially observable environm...

متن کامل

Policy gradient learning for a humanoid soccer robot

In humanoid robotic soccer, many factors, both at low-level (e.g., vision and motion control) and at high-level (e.g., behaviors and game strategies), determine the quality of the robot performance. In particular, the speed of individual robots, the precision of the trajectory, and the stability of the walking gaits, have a high impact on the success of a team. Consequently, humanoid soccer rob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009